Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shao-Wen Chen, Han-Dong Yin,* Da-Qi Wang, Xia Kong and Xiao-Fang Chen

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059,
People's Republic of China

Correspondence e-mail:
handongyin@Ictu.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
Disorder in solvent or counterion
R factor $=0.050$
$w R$ factor $=0.146$
Data-to-parameter ratio $=13.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-Hydroxy-3-methoxybenzaldehyde (pyridinium-4-ylcarbonyl)hydrazone chloride hemihydrate

The crystal structure of the title compound, $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{O}_{3}{ }^{+} \cdot \mathrm{Cl}^{-} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, exhibits $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$, $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}, \mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds. The chloride anions participate in extensive hydrogen bonding with the aminium cations and link molecules through multiple $\mathrm{N}-\mathrm{H}^{+} \ldots \mathrm{Cl}^{-}$interactions.

Comment

The molecular geometry of the title compound (Fig. 1) is listed in Table 1. The crystal packing (Table 2 and Fig. 2) is dominated by $\mathrm{N}-\mathrm{H}^{+} \cdots \mathrm{Cl}^{-}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, including also a three-centre $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Jeffrey \& Saenger, 1997). The intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}, \mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ bonds directly link two molecules (see scheme) through the chloride ion. The benzene rings are stacked along the c-axis direction by $\pi-\pi$ interactions, forming a lipophilic layer, whereas hydrophilic layers are interconnected by $\mathrm{N}-\mathrm{H}^{+} \ldots \mathrm{Cl}^{-}$hydrogen bonds.

Experimental

The title compound was prepared by the condensation of the o vanillic and isonicotinic acid hydrazide (molar ratio 1:1) in ethanol/ hydrochloric acid (3:1) at room temperature. The resulting solid was recrystallized from dichloromethane-ethanol ($1: 1, v / v$). Yield 85%, m.p. $577-579 \mathrm{~K}$. Analysis calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3.5} \mathrm{Cl}$: C $53.09, \mathrm{H}$ 4.77, N 13.26\%; found: C 52.98, H 4.69, N 23.15\%.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+} \cdot \mathrm{Cl}^{-} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=316.74$
Monoclinic, $P 2_{1} / n$
$a=12.925$ (3) A
$b=7.4369$ (17) \AA
$c=15.503(4) \AA$
$\beta=90.978$ (4) ${ }^{\circ}$
$V=1489.9(6) \AA^{3}$

Data collection

Siemens SMART CCD area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

$$
T_{\min }=0.955, T_{\max }=0.973
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.001 P)^{2}\right. \\
& \quad+0.7491 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.25 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

Figure 1
The structure of the title compound, with the atom numbering scheme and displacement ellipsoids shown at the 30% probability level.

Figure 2
Crystal packing of the title compound. Dashed lines indicate hydrogen bonds.
methyl C-H distances of $0.96 \AA$ ($\mathrm{O}, \mathrm{N}-\mathrm{H}$ as given in Table 2). The $U_{\text {iso }}(\mathrm{H})$ values were set at $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ for the aromatic and N -bound H atoms, and $1.5 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{O})$ for other H atoms.

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

We acknowledge the financial support of the Shandong Province Science Foundation and the State Key Laboratory of Crystal Material, Shandong University, People's Republic of China.

References

Jeffrey, G. A. \& Saenger, T. (1997). Hydrogen Bonding in Biological Structures. Heidelberg: Springer-Verlag.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

All H atoms were positioned geometrically and treated as riding on their parent atoms, with aromatic $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and

