Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shao-Wen Chen, Han-Dong Yin,* Da-Qi Wang, Xia Kong and Xiao-Fang Chen

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China

Correspondence e-mail: handongyin@lctu.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.006 Å Disorder in solvent or counterion R factor = 0.050 wR factor = 0.146 Data-to-parameter ratio = 13.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-Hydroxy-3-methoxybenzaldehyde (pyridinium-4-ylcarbonyl)hydrazone chloride hemihydrate

The crystal structure of the title compound, $C_{14}H_{14}CIN_3O_3^+ \cdot CI^- \cdot 0.5H_2O$, exhibits $O-H \cdot \cdot \cdot O$, $C-H \cdot \cdot \cdot O$, $C-H \cdot \cdot \cdot CI$, $N-H \cdot \cdot \cdot CI$ and $O-H \cdot \cdot \cdot CI$ hydrogen bonds. The chloride anions participate in extensive hydrogen bonding with the aminium cations and link molecules through multiple $N-H^+ \cdot \cdot \cdot CI^-$ interactions. Received 14 March 2006 Accepted 21 April 2006

Comment

The molecular geometry of the title compound (Fig. 1) is listed in Table 1. The crystal packing (Table 2 and Fig. 2) is dominated by $N-H^+\cdots Cl^-$, $C-H\cdots O$, $C-H\cdots Cl$ and $O-H\cdots Cl$ hydrogen bonds, including also a three-centre $C-H\cdots O$ hydrogen bond (Jeffrey & Saenger, 1997). The intermolecular $N-H\cdots Cl$, $C-H\cdots Cl$ and $N-H\cdots Cl$ bonds directly link two molecules (see scheme) through the chloride ion. The benzene rings are stacked along the *c*-axis direction by $\pi-\pi$ interactions, forming a lipophilic layer, whereas hydrophilic layers are interconnected by $N-H^+\cdots Cl^-$ hydrogen bonds.

© 2006 International Union of Crystallography All rights reserved

Experimental

The title compound was prepared by the condensation of the *o*-vanillic and isonicotinic acid hydrazide (molar ratio 1:1) in ethanol/ hydrochloric acid (3:1) at room temperature. The resulting solid was recrystallized from dichloromethane–ethanol (1:1, ν/ν). Yield 85%, m.p. 577–579 K. Analysis calculated for C₁₄H₁₅N₃O_{3.5}Cl: C 53.09, H 4.77, N 13.26%; found: C 52.98, H 4.69, N 23.15%.

Z = 4

 $D_x = 1.412 \text{ Mg m}^{-3}$ Mo *K* α radiation

7428 measured reflections

2580 independent reflections

1326 reflections with $I > 2\sigma(I)$

 $\mu = 0.27 \text{ mm}^{-1}$

T = 293 (2) K

Block, orange $0.17 \times 0.15 \times 0.10 \text{ mm}$

 $\begin{aligned} R_{\rm int} &= 0.060\\ \theta_{\rm max} &= 25.0^\circ \end{aligned}$

Crystal data

$C_{14}H_{14}N_{3}O_{3}^{+}\cdot Cl^{-}\cdot 0.5H_{2}O$
$M_r = 316.74$
Monoclinic, $P2_1/n$
a = 12.925 (3) Å
$b = 7.4369 (17) \text{\AA}$
c = 15.503 (4) Å
$\beta = 90.978 \ (4)^{\circ}$
V = 1489.9 (6) Å ³

Data collection

Siemens SMART CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.955, T_{max} = 0.973$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.001P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.050$	+ 0.7491P]
$wR(F^2) = 0.146$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
2580 reflections	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$
199 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

N1-C1	1.346 (5)	N2-C7	1.280 (5)
N1-N2	1.370 (4)	O1-C1	1.223 (4)
C1 - N1 - N2	118.9 (3)	01 - C1 - N1	122.4 (4)
C7-N2-N1	116.9 (3)	C3-C2-C1	124.1 (4)
C5-N3-C4	121.9 (4)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···Cl1 ⁱ	0.86	2.49	3.312 (3)	161
N3-H3···Cl1 ⁱⁱ	0.86	2.17	3.002 (3)	163
$O2-H2 \cdot \cdot \cdot N2$	0.82	1.91	2.632 (4)	146
O4-H15···Cl1 ⁱⁱⁱ	0.85	2.33	3.146 (7)	161
$O4-H16\cdots O1$	0.85	2.33	3.145 (7)	162
$C5-H5\cdots O4^{iv}$	0.93	2.21	3.136 (8)	173
$C7-H7\cdots Cl1^i$	0.93	2.71	3.549 (4)	151
$C3-H3A\cdots Cl1^{i}$	0.93	2.74	3.662 (4)	172
$C4-H4\cdots O3^{v}$	0.93	2.51	3.065 (5)	118
$C4-H4\cdots O2^{v}$	0.93	2.33	3.248 (5)	170
$C13{-}H13{\cdots}O4^{vi}$	0.93	2.57	3.237 (9)	129
Symmetry codes: (i) -	$-x + \frac{1}{2}, y + \frac{1}{2}, -z$	$x + \frac{1}{2}$; (ii) $x, y + \frac{1}{2}$	1, z; (iii) $x + \frac{1}{2}, -$	$y + \frac{1}{2}, z + \frac{1}{2}$; (iv)

Symmetry codes. (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2};$ (ii) x, y + 1, z; (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2};$ (iv) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2};$ (v) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2};$ (vi) -x + 1, -y + 1, -z + 1.

All H atoms were positioned geometrically and treated as riding on their parent atoms, with aromatic C–H distances of 0.93 Å and

Figure 1

The structure of the title compound, with the atom numbering scheme and displacement ellipsoids shown at the 30% probability level.

methyl C-H distances of 0.96 Å (O,N-H as given in Table 2). The $U_{iso}(H)$ values were set at $1.2U_{eq}(C,N)$ for the aromatic and N-bound H atoms, and $1.5U_{eq}(C,O)$ for other H atoms.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SMART*; data reduction: *SAINT* (Siemens, 1996); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

We acknowledge the financial support of the Shandong Province Science Foundation and the State Key Laboratory of Crystal Material, Shandong University, People's Republic of China.

References

- Jeffrey, G. A. & Saenger, T. (1997). Hydrogen Bonding in Biological Structures. Heidelberg: Springer-Verlag.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.